Meeting of the US Nuclear Data Network Brookhaven National Laboratory National Nuclear Data Center April 16-17, 2001

Training Sessions Topics for Discussion

- DDEP Evaluations into ENSDF (Helmer)
 General Policies.
 Conversion Coefficients and Derived Quantities
- Half-life (Helmer)
 Discrepant data
 Various Types of Averages
- 3. <u>β</u> and <u>β</u> Decay (Browne)
 Level Feedings. Transition Intensity Balances. The GTOL program.
 Annihilation Radiation. <u>β</u> Branching. The LOGFT program.
- 4. Electron Capture Decay (Browne)
 EC/β⁺ ratios
 X Rays. The RADLST program.
 The use of X-ray intensities for verifying decay-scheme consistency.
- Gamma Rays (Browne, Helmer)
 Energies. New Evaluated Standards (Helmer)
 Intensities. Averaging. The LWEIGHT program. (Browne)
 Multipolarities. Mixing Ratios. (Browne)
 Decay-Scheme Normalization. Examples. (Browne)
 Absolute Intensities. Uncertainties. The GABS program (Browne)
 Conversion Coefficients. Theoretical Values. Current Status. (Browne)

Edgardo Browne Isotopes Project Lawrence Berkeley National Laboratory April 16-17, 2001

Theoretical Conversion Coefficients

- 1. F. Rösel et al., At. Data and Nucl. Data Tables 21, 92 (1978)
- 2. I.H. Band et al., At. Data and Nucl. Data Tables 18, 433 (1976) 2 < 30

Interpolation Program ICC (Yakushev and Gorsol).

The conversion coefficient is:

Bo is the conventional conv. coeff.
B, and Be are parameters tabulated in
Nucl. Data Tables A6, 1 (1969).

L= <u>ZJ'IP. IJ></u> is the penetration parameter.

(3'11'11) is the MI Peretration Metrix Element (3'11'11) is the Reduced Metrix Element for p-ray emission.

More about multipolarities

Conventions

MI - Definite MI mult. (MI) - Uncertain MI mult.

MI (4E2) - Definite MI with possible E2 mixing.

[MI] - Assumed MI mult.

Multipolarities and Mixing Ratios

1. From conversion-electron data.

$$TP = TP(E2) + TP(MI) = (I + \delta^2)TP(MI)$$

$$TP(MI) = \frac{1}{1+\delta^{2}} TP \qquad (\delta=0 \rightarrow PORE MI)$$

$$TP(EL) = \frac{\delta^{2}}{1+\delta^{2}} TP \qquad (\delta=\infty \rightarrow PORE EL)$$

$$TP(E2) = \frac{52}{1+52}TP \qquad (5=\infty \rightarrow 7016EE2)$$

Case 1. We measured & lexp). Deduce 5.

$$\alpha(e\phi) = \frac{1e}{I_X} = \frac{I_X(M_I)}{I_X} \frac{th}{\alpha(M_I)} + \frac{I_X(E2)}{I_X} \frac{th}{\alpha(E2)}$$

But
$$I_{\gamma}(H) = \frac{1}{1+\delta^2} I_{\gamma}$$
 and $I_{\gamma}(E\lambda) = \frac{1}{1+\delta^2} I_{\gamma}$

$$\therefore \quad \angle (exp) = \frac{1}{1+\delta^2} \left(\angle (HI) + \delta \angle (EL) \right)$$

$$\delta = \frac{th}{\chi(HI) - \chi(exp)}$$

$$\chi(exp) - \chi^{th}(E2)$$

Case 2. We measured
$$R = \frac{I_{LI}}{I_{L3}}$$
. Deduce δ' .

$$I_{L1} = I_{\gamma}(H_1) \stackrel{th}{\swarrow}_{L_1}(H_1) + I_{\gamma}(E_2) \stackrel{th}{\swarrow}_{L_3}(E_2)$$

$$I_{L3} = I_{\gamma}(H_1) \stackrel{th}{\swarrow}_{L_3}(H_1) + I_{\gamma}(E_2) \stackrel{th}{\swarrow}_{L_3}(E_2)$$

Also
$$I_{\gamma}(\mathcal{E}2) = \frac{\delta^2}{1+\delta^2} I_{\gamma}$$
; $I_{\gamma}(M_1) = \frac{1}{1+\delta^2} I_{\gamma}$

$$\frac{S^{2}}{1+\delta^{2}} = \frac{\mathcal{R} \, \alpha_{L3}^{th}(MI) - \alpha_{L1}^{th}(MI)}{\alpha_{L1}^{th}(E2) - \alpha_{L1}^{th}(MI) + \mathcal{R} \left[\alpha_{L3}^{th}(MI) - \alpha_{L3}^{th}(E2)\right]}$$

% E2 is
$$100 \times \frac{5^2}{1+\delta^2}$$
; % HI = $100 \times \frac{1}{1+\delta^2}$

x-ray intensity balance

The corresponding normalizing factor is

$$N = \frac{100}{\sum_{i} \Delta_{i}} = \frac{100}{D + \sum_{i} I_{i}^{0}}$$

$$\Delta_{i} = I_{i}^{out} + I_{i}^{o} - I_{i}^{sh}$$

$$D = \sum_{x} (I_i^{out} I_i^{tN}) \equiv 0 \quad \text{ALWAY5}$$

$$\sum_{i} I_{gi}(1+\alpha_{i})_{gs+40} = 102 \pm 2 \%$$
using $I_{V}(312) = 38.6 \pm 0.5 \%$ (Gehrke et al.).
What went wrong?

Nuclear Penetration Effects.

2. Using X-ray intensity to normalize a decay scheme

Fig. 4. ²³U electron-capture decay scheme. Gamma rays measured in this work are shown with thicker arrows; other data are from refs. [3,11]. Electron-capture branches per 100 decays of ²³U and log fr values are from gamma-ray transition probability balances (see Table 3).

$$I_{\chi}(25) = 100 (6)$$
; $I_{\chi}(84) = 50 (3)$; $I_{KX} = 390 (14)$

BK = 115.6 keV (most KX rays originated from atomic vacancies created by the EC process)

Total number of vacancies =
$$\frac{I_{KX}}{\omega_{K} \cdot \frac{EC(K)}{EC(TOTAL)}} = 680 (33)$$

$$N = \frac{100}{680 (33)} = 0.147 (7)$$

50:

$$I_{\gamma}(25) = 100(6) \times 0.147(7) = 15(1) \%$$

 $I_{\gamma}(84) = 50(7) \times 0.147(7) = 7.5(6)\%$

Measured
$$I(5118^{\pm})/I_8(328) = 0.058(4)$$

50 $I(p^{\dagger}, 10104) = \frac{1}{2} \times 100 \times 0.058(4) = 2.9(2)$

$$p^{\dagger}$$
 decay populates the first two levels (epproximation, $I(p_0^{\dagger}) + I(p_1^{\dagger}) = 2.9$ (2)

From
$$\gamma$$
-ray intensity balance: $\Gamma(EC_1) + \overline{\Gamma}(\beta_1) = 49(5)$
Using theory: $\Gamma(EC_1/\beta_1) = 47 \longrightarrow \Gamma(\beta_1) = \frac{49}{48} = 1.02$
Therefore, $\Gamma(\beta_0) = 2.9(2) - 1.02 = 1.9$,
Using theory, $\Gamma(EC_0) = 1.9 \longrightarrow \Gamma(EC_0) = 38.8$
 $\Gamma(EC_1/\beta_1) = 1.9 \longrightarrow \Gamma(EC_0) = 38.8$
 $\Gamma(EC_1/\beta_1) = 1.9 \longrightarrow \Gamma(EC_0) = 38.8$
 $\Gamma(EC_1/\beta_1) = 1.9 \longrightarrow \Gamma(EC_0) = 38.8 \longrightarrow \Gamma(EC_0) = 38.8$
 $\Gamma(EC_1/\beta_1) = 1.9 \longrightarrow \Gamma(EC_0) = 1.9 \longrightarrow \Gamma(E$

Equilibrium Intensities I(x+e)(140.5) = 827(12) I(x+e)(142.7) = 7.3(7)

$$I(y+e)(142-7) = 7.3(7)$$

$$F = \frac{T_{12}(99Mo)}{T_{12}(99Mo) - T_{12}(99MTc)} = 1.10$$

Decay Scheme Normalization [I(x+e)(142-7)+ I(x+e)(140-5)+ I(x+e)gs x N = 100 $I_{(x+e)(141-7)}^* = 7.3(7)/F = 7.3(7)/1.1 = 6.6(6)$ I*(x+e)(140.5) = 827(12)/F = 827(12)/1.1 = 752(11) I(y+e)qs = 57.0 (8) $N = \frac{100}{816(11)} = 0.01226(17)$ Px(40.5) = 739(11) x 0.1226(16) = 90.6 % Ix(739.5) = 100 -> Px(739.5) = 12.26 (17)% What is the uncertainty in Px (140.5)? Is it Px(140.) = 90.6(18)? That is, 2%? Px(140.5) = Ix(140.5) X100 1 [Ig(140.5)(1+ x140.5) + Ig(142)(1+d) + Ige = 100 (1.017(3) +0.0099(9) +0.077(2)) = 90.6(3)%

B Feeding to 142.7-keV level

$$I\beta^{-} = I_{8|42.7}^{*} (1+\alpha_{142.7}) + I_{82.17}^{*} (1+\alpha_{217}) - I_{8}(s+e)_{142.7}$$

$$I_{82.17}^{*} (1+\alpha_{2.17}) = I_{8|40.5} (1+\alpha_{140.5})_{10.1} - I_{8}(s+e)_{140.5}$$

$$= \frac{739(11) \times 1.119(3)}{101} - 44.0 = 708$$

$$50,$$

$$I\beta^{-} = \frac{0.174(14) \times 41.9(8)}{11} + 708 - 45.7 = 669$$

$$I\beta^{-} = \frac{0.174(14) \times 41.9(8)}{11} + 708 - 45.7 = 669$$

* Corrected for equilibrium

REPORT FILE - PROGRAM GAGS

Current date: 03/22/2001

99MO B- DECAY

1992GO22,1990ME15

NR= 0.1226 18 BR= 1.00

FOR INTENSITY UNCERTAINTIES OF GAMMA RAYS NOT USED IN CALCULATING NR, COMBINE THE UNCERTAINTY IN THE RELATIVE INTENSITY IN QUADRATURE WITH THE UNCERTAINTY IN THE NORMALIZING FACTOR (NR \times BR). FOR THE FOLLOWING GAMMA RAYS:

Absolute Equilibrium Intensities $P_{X(140.5)} = 82.4(4) \times 1.1 = 90.6(4)\%$ $P_{X(142.7)} = 0.0194(18) \times 1.1 = 0.0213(20)\%$